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SUMMARY

Structural synthesis has been defined as the rational directed

evolution of a structural configuration, which in term of a defined

criterion, efficiently performs a set of specified functional pur-

poses. Structural synthesis is essentially a problem in the program-

ruing of interdependent activities involving three types of considera-

tions; namely, a specified set of require.Bnts, a given technology

and a criterion by means of which choices can be made between various

designs.

The structural configuration employed as an example in this

study is an integrally stiffened waffle plate used primarily for

aero-space structures. The criterion of design selection employed
is the total weight of the waffle. (See Figure l)

The synthesis technique developed as a result of this research

provides a starting point for the optimization of other engineering

systems which have the following characteristics:

a. relative minima

b. non-linear inequality constraints
c. a multitude of side constraints

d. non-linear merit function

This note reports the successful development of a synthesis

capability for symmetric waffle plates based on the technology
presented hereino

INTRODUCTION

Analysis as a tool of structural design is well known. However,

the really effective use of an analysis requires that rational methods

of directed redesign be developed. As with any structural system,

there has been a tendency to regard the problem as being solved when a

reliable method of analysis has been developed, while in fact the

availability of a reliable method of analysis is only a prerequisite

to tackling the task of design synthesis.
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Structural synthesis has been defined as the rational directed
evolution of a structural configuration which, in terms of a defined
criterion, efficiently performs a set of specified functional purposes.
Structural synthesis is essentially a problem in the programmingof
interdependent activities involving three types of considerations;
namely, a specified set of requirements, a given technology and a
criterion by meansof which choices can be madebetweenvarious designso

The structural design cycle can be thought of in terms of three

main phases :

a@

b.

Co

Establish a trial design consistent with the

requirementse

Carry out an analysis based on this trial design

using the accepted technology.

Based on the analysis_ modify the trial design such

that the merit function is improved.

In the past, the redesign phase has been based primarily on an

artful combination of experience, judgment and often courage. Conse-

quently the redesign process is not clearly defined. Also_ the number

of trips around the design cycle has been limited by the available

manpower and the time required. The huge strides that have been made

in the digital computing field have substantially reduced the time to

complete one design cycle. The problem of stating mathematically the

philosophy or basis on which redesign decisions are made is the major

obstacle to the development of methods of structural synthesis.

Specifications and Requirements

The design load system is made up of several sets of mechanical

and thermal loads. When the design load system involves a multiplicity

of load conditions, the minimum weight optimum design will be a

balanced design for the entire design load system. It should be

recognized that if an optimum design is sought using each design load

condition separately, several distinct incompatible designs will resulto

The basic requirement of the structural system is that it must

maintain its structural integrity while being subject to the design

load system. The design is inadequate and the structure is said to
fail if the structural behavior does not remain within the confines

of the stated limits. What constitutes failure must be carefully
defined and this can be expected to vary from one design task to
another.

In addition to the behavioral requirements there exist several

specifications which the design parameters must fulfill. These are
called side constraints and arise for reasons such as

a@

b.

Ce

analysis limitations

compatibility constraints
fabrication limitation
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Technology

The method of analysis to be used in any synthesis program is a

prerequisite to development of the synthesis capability. Existing

literature contains methods of analysis which adequately predict the

behavior of a substantial class of structural systems.

Criterion

In many important struct_al design areas the minimization of

weight is important. It should be noted that a minimumweight basis

for evaluating merit is probably the most readily stated and it is

certainly of great importance in the design of flight vehicles.

The concepts of structural synthesis in no way necessitate the

use of the weight function as the merit function. If another such

measure, i.e., total costj thermodynamic or aerodynamic performance

is expressible mathematically, it may be used in place of the total

weight with no conceptual changes in the synthesis process described
herein.

SYMBOLS

A
m

a

b

bL

b
m

b
X

C
a

D1

Dz

D3

D
P

E

H

K2

K3

participation coefficient of assumed mode

x dimension of plate

y dimension of plate

lower bound on b
x

upper bound on b
x

spacing of stiffeners

shear buckling coefficient

bending stiffness - x direction

bending stiffness - y direction

torsional stiffness

pth design parameter

modulus of elasticity

total height of stiffener plus skin

lower bound on t
s

lower bound on t
W
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X

N
xy

N
Y

1

t
W

t
s

W

W

Y

intensity of resul_m]t normal fo_"ce - x direction

intensity of resultant shear force - x and y directions

intensity of resultant normal force - y direction

ith random number

stiffener thickness

sheet thickness

z component of displacement

total weight of a waffle plate

tensile yield stress

a aspect ratio
r

Poisson ts ratio

p weight density

FUNDAMENTALS OF STRUCTURAL SYNTHESIS

Basic Definitions

At the outset_ certain parameters of any synthesis problem are

set as design requirements. All those parameters which are not pre-

determined by the requirements are called design parameters. These

independent variables are then determined by the synthesis program

such that the merit function assumes the optimal value. Consider s.n

nth order space where the design parameters are plotted along the

coordinate axes defining the space. This space will be referred to

as a design parameter space. Note that it differs from the space

frequently employed in optimization studies in that the merit f_ctien
is not one of the coordinate axes. Instead contours of constant merit

function are plotted in this space. Therefore, it is possible for the

gradient to the merit function to assume a unique and distinct value

for each point in the design parameter space. The coordinates of any

point fix certain values to the independent design parameters, thus

completely specifying the design of a structural system°

Also present in this space are behavioral constraint surfaces

generated by the limitations on the structural behavior of the system.

If a design point is on a behavioral constraint surface, the structure

is on the verge of failure in one of the defined modes. This type of

a design point is called a bounded point. Associated with each defined
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failure mode there exists a behavioral constraint surface for each load

condition of the design load system. The collection of these surfaces

which separates the acceptable region of the design space from the un-

acceptable region is called the composite constraint surface° _his

composite surface is continuous but, in general, the gradient to the

composite surface is discontinuous at the junction of any two component

surfaces. If any design point is above the composite surface in the

sense that the design is adequate to sustain the loads, the design is

conservative and this point is called an acceptable free point. If

any design point is below the composite surface, the structure will not

sustain the loads and the point is in the region of violation and the

design is unacceptable. Note that it is possible for a design point to

be bounded and unacceptable if it is on any constraint surface and below

the composite surface. (See Fig. 2)

Behavior Functions

The behavior of the structure is tested or examined through the
mechanism of a behavior function. A behavior function is a mathe-

mmtical expression relating the coordinates of the proposed design

and the design requirements to the behavior of the structure• If

the behavior function assumes its limiting value the structure is on

the verge of failure. If it is within its limits, the structure can

successfully sustain the loadsj while if the behavior function is

beyond its limits the structure has failed• The most general matrix

expression of the behavior functions for a single load condition is
as follows :

gn (%)

If the values of the behavior functions are to be exaxined for

more than one load condition, they can be displayed as columns of a

rectangular array.

Fgll gzs

gnl %2 •

If the following relationships holds

• • gn5]

<[u
n

are the lower and upper bounds_

(i)

(2)
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the design is said to be adequate, otherwise the design is unacceptable.

Note that an upper bound of f._ve load conditions was used in Eq. (I).

This is arbitrarily selected as the upper bound for this study.

The quantity _D ] is a column vector of design parameters specifying
(_

t_ coordinates of Pthe proposed point in the design parameter space.

Weight Function

The total weight of the structure, used as the sole criterion of

design selection, can also be expressed as a f_mction of the design

parameters. In general, it is written as:

w : _ Pi fi (Dp) (3)

The limitations on the design parameters may be expressed mathe-

matically as follows=

General Problem

The mathematical statement of the synthesis of a structural system

may now be summarized as follows:

design load system [U_] well the design
Given Pi and the as as

re quir--_ts _I' _DL_ ' ILl and I •

and

and

_ _ <

w _ z Pifi(Dp)
i

assumes a minimum value.
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DesignModification

The first step in any design problem is the establishmsnt of an
adequatetrial design. Successful modification of the design can be
accomplishedby movingin the design parameter space, such that the
merit function does not increase. For simplicityj the motion is
restricted to straight lines and canbe stated as follows:

where

and the
t
i

are the direction cosines of the straight line
of travel
is the distance travelled

superscript is the design cycle counter.

A major aspect of the developmentof methodsof structural synthesis
is the selection of proper directions and distances of travel in design
parameter space. The following is a list of someof the available methods:

Directions

a. random- employa randomnumbergenerator to develop the
direction cosines

b. semi-intelligent - orient a line in the design parameter
spaceemanatingfrom this current design to a
predeterminedpoint_ e.g., point of equal weight
or zero weight. This methodwasused in Reference
I, for the three bar truss problem.

c. intelligent - steepest descent.

Distances

a.

b.

arbitrary - f_xed increment or a random increment

accelerated - select a fixed increment and move that

distance. If the new point is acceptable

double the distance and repeat this

doubling until the design is in the region
of violation. At this time halve the total

distance of travel back to an already

acceptable point. Place the design in

permanent storage and restart from this new

point with the original fixed increment.

Use the doubling and halving scheme until

the design point has converged to a con-
straint surface.
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C• exact solve for the distance to a neighboring

constraint surface or a point on the same

weight contour.

Various schemes of design modification c_n be generated by

combining the above _ntioned directions and distances of travel•

EXAMPLE FROBLEM

Symmetric Waffle Plate

As an example problem illustrating the application of the structural

synthesis concept, consider a symmstric waffle plate subject to membrane
loading. (See Figures 1 and 3). The waffle is symmetric in the sense

that th_ stiffener spacing in the x direction equals the stiffener spacing

in the y direction and the x stiffener thickness equals the y stiffener
thickness.

The waffle plate is fabricated from a solid plate by first applying

the appropriate protective coating and subjecting the plate to a chemi-

cally active etchant. This process, best known as chemical milling, has

recently become feasible on a production basis• It has created the

capability for producing stiffened panels with orthogonal and skewed

sets of stiffeners integral with each other and integral with the back

up sheet. It should be noted that all of the stiffeners are of the sa_e

depth, thus creating a flush inner surface. In the past, stiffened

panels were fabricated by fastening stiffeners to the sheet, i.e.,

welding, riveting, etc. Fabrication problems led to some rather

awkward configurations(joggles, clips, etc.) for nonparallel sets of

stiffeners. The end result was that the design was difficult to

fabricate and inefficient in terms of weight. Integral orthogonal

stiffeners and sheets made it possible to realize significant weight

savings.

The advance in fabrication capability due to chemical milling has

created an interest in the analytical aspects of the problem. Because

Such structures were available for design applications, it became

necessary to develop an analysis capable of accurately predicting the

behavior of the structure. An analysis based on failure modes including

gross instability, local buckling and yielding is presented in Appendix B.

The total weight of the structure is chosen as the sole criterion

by means of which choices are made between various designs. It is

fortuitous that a merit function, so significant to the prime users of

such structures, is easily expressible mathematically. The concepts of

structural synthesis in no way necessitate the use of the weight function

as the merit function. If another measure, i.e., total cost, thermo-

dynamic or aerodynamic performance, is expressible mathematically, it

may be used in place of the total _ight with no conceptual changes in

the synthesis techniques described herein.
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The design parameters selected for synthesis of symmetricwaffle
plate are : t s, the sheet thickness; bx, the stiffener spacing; and tw ,
the stiffener thickmess.

SymmetricWaffle Behavior Functions

As an exampleof a beha_-iorfunction consider the material yield
criterion as outlined in AppendixB. Thewaffle back-up sheet is on
the verge of failure if the following condition exists

i/2

i x y y + 3 (x)

ts t _ 2
[(_-)+ (1- _) (_--}]

x

= y

(B19)

If the left-hand side is less than the value of Y, the design is

adequate. If it is greater than Y, the back-up sheet has yielded.

The left,land side of Eq. (B19) is therefore already in the behavior

function form. One alteration is made to facilitate computer calcu-

lation. The value of Y is taken to the left-hand side to give the

following expression:

YH ts

[(_-)+

i/2

2> _s/nN 2 1

- Nx Ny + Ny + 3 (_) < i

t t 2

Note that because of the nature of the function there is no lower limit@

It was found that all of the behavior functions have the same basic

characteristics

a. upper bound of unity
b. no finite lower bound

c. nonlinearly dependent upon _le design parameters

The column matrix of behavior functions for a single load condition
can now be written as follows:
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BF(Dp)I "

f

GY(Dp)

SX(Dp)

SY(Dp)

GBF(Dp)

LBX(Dp)

LBY(Dp)

LBP(Dp)

(7)

where the elements of the behavior matrix represent the behavior functions

associated with the following failure modes:

GY(Dp)

SX(Dp)

GBF(Dp)

LBX(Dp)

LBY(Dp)

LBP(Dp)

- gross yield

- stiffener (X direction) yield

- stiffener (Y direction) yield

- gross plate buckling

- local stiffener buckling (X direction)

- local stiffener buckling (Y direction)

- local buckling of the back-up sheet

In order for the behavior of a design to be acceptable, the above

criterion (7) mast not be violated in any load condition. The inequality

of equation (7) is defined as follows:

Element by element the left-hand side of equation (7) must be

less than or equal to unity for the equation to be satisfiedo

If any single element is greater than unity the inequality is
not satisfied.

Symmetric Waffle Weight Function

The total weight of the symmetric waffle plate, used as the merit

function, is written as follows:

t t _]w - abpH[ S.- (1- -_) (1 =_) (8)
x

where t , t and b are the design parameters and a, b_ p, H are

definedSin t_e Tabl_ of Symbols.

Design Parameter Limits

The coluNm vector locating any design point in the design parameter

space is defined as follows:
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itsl= (9)_. P bx

In general, there are three types of design parameter limits:

a. Fabrication limitations_ e.g._ lower bounds on sheet and

stiffener thicknesses.

b. analysis limitationsj e.g._ upper bound on stiffener

spacing.

c. compatibility constraints_ e.g._ stiffener spacing must

be greater than the stiffener thickness.

The following are the matrix formulations of thB upper and lower

bounds. The letters a, b and c to the right of each element are the

types of limits defined above :

IHIbb
bx c

(lO)

I K2 I a

= bL c and

_K 3 a

a

The bounds on the design parameters are employed as follows:

A more complete discussion of the design parameter bounds for symmetric

waffle plate is presented at the end of Appendix B.
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Brief Statement of the Problem

Now that the behavior functions and the merit function have been

defined for the symmetric waffle, the mathematical statement of the

example problem used in this study can be stated as follows :

and

Given H, _anddesign requirements[N] _ihe desi_n_i°ad system as well astheand .

[B,(op l [1]
and

t t 2

assumes a minimum value.

Design Modification

Three basic programs were written for the synthesis of_affle plates

drawing on the techniques outlined previously. The first, Monte Carlo,

was found robe inadequate to solve the problem, because of relative

minima. The second, Compromise I_ was inefficient in terms of computer

time. The last, Compromise II was found to be both adequate and efficient.

The following is a detailed description of all three programs.

Monte Carlo

As a first attempt, a modified Monte Carlo metho@was adopted for

the design modification process. The process is as follows:

a@ Propose a trial design and examine the behavior. If the

design is adequate# proceed. If not, propose a new trial

and repeat Step a.

b@ Orient a unit vector from the current trial design to the

point of absolute minimmaweight. This point is at the

intersection of the lower bounds of ts and t and the
_pper bound on b . w

X
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C@

d.

Travel along this semi-intelligent direction until a
constraint surface is encountered, Accelerated

incremental motion is used to select the distance of

travel,

Once the composite constraint surface is encountered use

a random number generator to select the direction cosines
of a new line of travel, The random direction must ful-

fill two requirements.

]. must not enter the region of violation
2. must not increase the merit function

e. Once the composite constraint surface is encountered using
the random direction of travel a new random direction

must be chosen. This process is repeated until convergence

occurs and it is no longer possible to find an acceptable
random direction.

Inherent in this method is the assumption that there are no relative

minima in the design parameter space. It is readily seen that if there

are no relative minima then convergence to a _lique opti_mm can be

accomplished regardless of the starting point, It was found that the

assumption was not valid, Convergence to distinct optima did occur and

the final output design was greatly influenced by the initial trial, A

case which exhibited two distinct optima was examined in greater detail,

A straight line was drawn between the two optimal points as shown in
Figure 4, The behavior functions were examined at fixed increments

along the llne. It was found that the gross behavior function increased

from the bounded value of unity as the increment moved the test point

away from the first optimum and then gradually decreased to unity as

the other optimum point was approached. This test showed that pockets

exist in the gross behavior function and consequently in the composite

constraint surface. Therefore_ _t was concluded that the modified

Monte Carlo program was inadequate to synthesize waffle plates. It

became necessary to develop a method of piercing the constraint surface

to examine the possibility of relative minima pockets,

Compromise I

Compromise I was the first attempt at solving the synthesis problem

recognizing the existence of relative minima, The method or program was

named Compromise because it was the merger of two methods of direction

selection and two methods of distance determination. The program employs

the highly intelligent steeoest descent direction of travel with an

incremental distance of travel whenever the current trial design is free

and acceptable, Steepest descent motion proceeds until a constraint

snrface is encountered, When the current design is bounded to a con-

straint surface a random number generator is used to select a direction,

The intersections of this random direction with the current weight

contour are found and tested as trial designs. If one of these "side-step "



points is acceptable and free it is placed in permanentstorage and
steepest descent motion proceedsuntil a constraint surface is encountered.

SteepestDescent

Thedirection of travel in steepest descent is found by calculating
the componentsof the gradient to the weight surface, at each trial design
point.

2
t

W " (1 - _) pab (13)bt
S X

2t t t

W ,,. __w (1- _) (1 - _) pab H (l_)
_b x b 2 x

x

t t

_w 2 (I- -$)(1- _1 pabH (I_1W "%--
W X X

The above components of the gradient to the weight surface are
normalized as follows and are used as the direction cosines

_W

ts (16)

'ts"/C_ts)--v + (b-'_) + (_"C')
2 2 BW 21

x w

_W

bE
b = x (17)

x 2-s) + ( ) + (_i----)
x W

_W

An increment of 0.01 was used for the steepest descent distance of

travel. As the design point approaches a constraint surface it is

possible that this increment is too large° If this is the case, the

distance of travel is found by systematically halving the current distance

of travel until the design point lies on the constraint surface, with a

fixed tolerance ¢. Once the design point is on a constraint surface, it

is generally impossible to steep descendwitho_t piercing through the

constraint surface. A side-step or alternate step is then sought such that
the merit function remains constant.
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Alternate Step

Figure 5 is a sketch of a planar slice through a design parameter

space. The plane is determined by a random line in the plane of t - b
.X

and the current design point. Two random numbers are needed to deEerm_ne

the random line in the base plane and a third random member is used to

generate the direction of travel in the random plane. The design modifica-

tion using the random direction can be written as follows :

(±+I) - t (i) + I_ Ats s

(i+l) = b (i) + 12 Abx x

(i+l) : t (i) + #3 Atw W

where A is the distance to another point on the same weight contour.

Equate the weight of the ith design to the weight of the (i+l) th

design

W (i) . W (i+l)

cancelling common terms the result is as follows

ts tw 2 ts + Iza _ + 13A 2

(I --H--) (i-_ x) = (I H )(I bx + $2 A ) (19)

Solve for the polynomial in A.

2 11 2 3

bx 3- (*2 - %) a

t s

x -_- (bx - t_

t

. 2bx2 (i - _) (bx - tw) (12 " 13)

t 2

+ 2bx '2 (I- _-_)(b x - tw) ] A = 0 (20)
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There is a common factor of A, indicating a zero root. This is

reasonable because the current design point is on the same weight

contour. Notice from Figure 5 that it is possible to construct a line

which intersects the weight contour at only one point, i.e., the current

design point. This particular line will yield a pair of complex roots

to the polynomial in A p Eq. (20). If such a case is generated, the

computer program is written to immediately reject that direction and

generate three new random direction cosines. It should be mentioned

that the random consines are not independent in the sense that they are

generated by normalizing three random numbers.

R°

(21)

where i - i, 2, 3
and R are random numbers from minus to plus unity.

l

The zero root of the cubic equation (20) is dropped and the computer

program treats the equation as a general quadratic. If complex roots

are generated they too are dropped and another set of random numbers

are generated. If real roots are found as the solution, they are then

employBd to select an alternate step design point. If the resulting

design is a free acceptable point, the program returns to the steepest

descent mode of travel until a constraint surface is encountered again.

The process is repeated until convergence to an optimum occurs. Since

the m_thod either reduces the weight or holds it constant, it is not

possible for the solution to diverge away from the desired optimum.

Proof of an Optimum

The major shortcoming of this technique, as with any search technique,

is the proof of the optimum. Once the program seems to have converged to

a minimum, the question asked is as follows :

Is this the absolute minimum or is it "locked-in ", so to speak,

at a relative minimum? The same question can be stated with a

negative slant. Is it possible to find a direction, random or

otherwise, which will lead to a design point of equal or lower

weight, above the composite constraint surface?

Since there is no mathematical means of answering the positive

question, the latter must be used. A rather laborious but conclusive

means of answering the negative question would be to examine all

admissible designs of weight equal to the_ight of the apparent optimum.

For the case of three independent design parameters, there is a second

order infinite set of design possibilities.
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Since the behavior functions and the weight function are well behaved_
it is only necessary to examinedesigns at a finite increment, for the
fixed weight. If the current design is the only design in its weight contour

within the design parameter bounds_ sufficient to sustain the loads, then

the current design mnst be regarded as the true optimum.

This weight grid method was used for some of the preliminary work.

After the computer program found an optil_um from two starting points,

the optimum Might was used to generate a weight grid. In every case,

t_ weight grid showed that the apparent optimum was truly the absolute
minimum.

Instead of examining a gridwork of admissible designs, a random

selection of designs at the current weight can be tested. The more designs

tested, the higher the degree of confidence that the apparent optimum is

the true optimum. This test of the optimum can be accomplished by permitting

the computer to search for an alternate step after it has appeared to have

converged.

Another method of verifying the optimum, although it is not conclusive,

is to run the synthesis from two distinct trial design points. If the

synthesis paths are different but the final optimum is the same, within the

same computational tolerance, a degree of certainty can be achieved. The

msthod used for this study is a combination of the latter two methods. Each

design case is synthesized from two distinct trial points and once the pro-

posed optimum is reached the computer is permitted to run and randomly

examine the field of admissible designs of optimal weight. In this way, a

degree of confidence is developed in the optimum design.

Compromise II

Compromise II is an advanced and more intelligent version of its

predecessor, Compromise I. It was found that Compromise I consumed

computer time in searching through the random directions to find a line

which would yield another point on the same weight contour. Compromise II

reduces the degree of randomness and examines only those directions which

_ill yield an alternate step within the design parameter bounds. There-

fore, it is more selective in its directions and consequently more

intelligent.

The random number generator is again employed to generate a random

line in the base plane b - t . This line is used in conjunction with the

current design point to _ener_te the random plane as was done in Compromise I.

Figure 6 shows that if an alternate step design exists within the design

parameter limits_ it must be along the Might contour and within the

following bounds :

a. the tangent to the weight surface

b. the design parameter bounds

c. the chords defined by the current design point and the

intersection of the weight contour and the design

parameter limits.
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Notice that the existence of this design is independentof the
behavior. First, an alternate step design point within the design
parameterboundsmustbe found and then its behavior examined. If
the behavior is adequate, tD_ alternate step point is acceptedand
re-design is carried out along the line of steepest descent as described
in the steepest descent section for CompromiseI. Theonly difference
betweenCompromiseI and CompromiseII is that in the latter the
selection of a direction for seeking an alternate step is substantially
moreefficient.

Alternate Step

A randomnumbergenerator is employedto select a randomplane
parallel to the t axis, as wasdonein CompromiseI. Figure 7 shows

• S
a v_ew of the deslgn parameter space looking down the t axis. Notice

that there are three distinct sets of random lines in t_e base plane.

That is, the random plane generated by the random line and the current

design point, can intersect the design paramster bounds in three combina-
tions.

Case i -

Case 2 -

Upper bound on b and

compatability bound (bx > tw )

Lower bound on t and

comparability boWund (bx > tw)

Case 3 - Upper bound on b and
lower bound on tx

Ig

The random line

as follows:
in the plane of b - t

x w
can be written mathematically

whe re

and

Bb + ct = D (22)
X W C

B =

C =

R.

3.

1:]1

+ R 2

R_

2 + R2

are random nur_ers

Dc is determined by evaluating (22)
at the current design point
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The componentsof the gradient to the weight surface are given
by equations (13) (14) and (15) and are used to write an expression
for the plane tangent to the weight surface at the current design

(1- ) ts- (l- )(l- 5--w) bx
X C X X e

÷ 2 (1- ) (1-%-- w c
x X c

where the subscript c indicates that the quantity within the brackets

must be evaluated at the current design point. Kc must also be deter-
mined at the current design point.

Figure 8 is a view of a random slice through a design parameter

space showing the weight surface and a hypothetical composite constraint

surface. The plane of the paper is the plane determined by the random

line in the b - t plane and the current design point. The type or
X W

case of the random plane must be ascertained in order to determine the

appropriate design parameter bounds. The following is a scheme for

classifying the types of random lines :

me

bo

C@

generate the random numbers RI and R_ and solve
for B, C, and D

C

set t to zero and examine the resulting value of

b_ If bx is less than its lower bound or higher
its upper bound, the random line is of Case 1.

if the above test fails the random line must be of

Case 2 or 3. Set b to zero and examine the

resulting t . If tx is positive the random line
W

is of Case w2. If negatlve, it is Case 3.

Having once determined the case of the random line used to generate

the random plane, it is possible to solve for the coordinates of the
intersection of

a. the random plane, the tangent to the weight surface and

the appropriate design parameter bounds.

b. the random plane, the contour of the current weight and

the appropriate design parameter boundso

These coordinates are found by the simultaneous solution of the

expressions for the above mentioned surface. The points are subsequently

used to solve for an alternate step vector in the design parameter space.
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In Figure 9, the tangent intersections are labeled (2) and (4)

while the weight contour intersections are labeled (I) and (3). The

current design point is labeled (5). Notice that an alternate step

direction of travel emanating from the current design and intersecting
the weight contour within the design parameter bounds must pass between

points (1) and (2) or points (3)and (4). Compromise II selects alter-

nate step directions of travel by first solving for a vector from point
(5) to point (1). It adds to this base vector a fraction of the vector

from point (1) to point (2). A similar vector is generated by using

points (3) and (4). It then normalizes the resulting vector and employs
the root finder polynomial (20). Only one root to the polynomial has

any significance, and that is the distance to a point on the same_ight
contour along the line generated. The major asset to this method is

that the program wastes no time in generating and testing designs which

have no real physical significance. The program is more efficient

simply because it is more intelligent in its selection of an alternate
step direction of travel.

In order to solve for the coordinates of the intersections, it is

necessary to solve equations (22), (23), (8) and the appropriate design
parameter bounds, simultaneously. There are three design parar2ter

bounds, (ts = O, tw = O, bx_bx)max) and the necessary sets of
coordinates are as follows:

m

(a) Point 1 bxz (bx)ms x

D -Bb
C X I

t -
wz C

tsz = H _ I -

W
C

(1-
t

W 1

(1- E--)
x 1

Point 2
b = (bx)ma x
X 2

t
w 2 C

D - Bb
C x

2
ml

t
S

2

_W b _W t
Kc - - c

S
C
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(b) Point 3

b
X 3

D
C

E

Point _ t = 0

s_

W 1/'2

W I/2 _

[ c jDO I - (l - _-5-_)

w _/2

I o

. I [Dc _ C (
bx 4

_W -BK
(_-6-) Do c

X
C

(_w)(-_-b=)oc- _-C_cB

"h

(_W) D - BK
_--_XC C C

( _w ) _w_-_jcc-c_ c

(c) Point I t - 0
W 1

D
O

b
xI B

Wc

%sI - ab p

Point 2 % = 0
W 2

D
0

X 2 B

B
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(d) Point 3 b = (bx)ma x
x_

t
w 3 C

D -Bb
C X 3

W
C

tss H i- (I-)
t

%
(i- F--)

X 3

Point & bxh (bx)ma X

t II

wh c

D - Bb

c xh

3W bx 4_c " (_)c

_W
(_-_--)

s C

t

w4

The coordinates of the intersections for the different cases of

random lines are as follows:

Case 1 - coordinate sets (a) and (b)

Case 2 - coordinate sets (c) and (b)

Case 3 - coordinate sets (c) and (d)

The coordinates are used to generate a vector emanating from the

currents design to a region bounded by the tangent and the chord.

Figure 8 is another sketch of an arbitrary slice through the design

parameter space showing the weight contour and a hypothetical composite

constraint surface. Knowing the case of the random line, it is possible

to determi_ the coordinates of Points a, bj c and d. The alternate

step direction of travel is generated as follows :

or

_2 = (;-p) + x (_-_) (2rib)
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and I

2

,2° (25b)

when the bars indicate vectors and T is a positive fraction less than

unity. It is possible to examine several points along the weight

contour between p and a or p and c by using different values for y.

If y is incremented from zero to unity the alternate step design point

moves along the contour from a to p. It is readily seen that is y is

incremented from unity, the first alternate step tested will be acceptable

unless the current point is a relative minimum. The synthesis path

will tend to creep down the side of the constraint surface. On the

other hand, if y is incremented upward from zero the synthesis path

will tend to oscillate across the acceptable region. Both of these

incrementation schemes lead to a slow convergence. The incrementation

of y should lead to an alternate step design point which is not near

any constraint surface such that a maximum distance of travel can be

achieved in steepest descent. The following is the sequence of values

of y used in this work.

0.5000

0.7500
0°?500

0.6250

0.3750

0.8750

0.1250

0.0625
o,9375
0.03125

The sequence is arranged so that the albernate step direction

will tend to direct the path toward the center of the acceptable

region. If the current design point is in a large pocket the tendency

is for the alternate step to remain in that same pocket. On the other

hand, if the design point is in a si_a]l pocket, it is possible for the

synthesis path to leave that pocket if a more dominant relative minimum

exists. Figures lO and ll show flow charts for the analysis and the

Compromise II synthesis program respectively.

In summary, the method will select alternate step directions of

travel which lie in a random plane between an upper bound (the tangent)

and a lower bound (the chord). If the design point is free, the synthesis

path is along an incremental steepest descent. Compromise II was found

to be considerably faster than Compromise I. Identical problems were

solved using both programs to compare running time. While Compromise I

needed approximately 90 minutes to solve a given problem, Compromise II

converged to the optimum in approz/mately 30 minutes. All programs were

written using the Runcible compiler and the Burroughs 220 Machine.
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The problem of proving an optimum is still present in Compromise

II. The method used is the same as that of Compromise I,

hqg_RICAL RESULTS

Contained within this section are various numerical examples of

waffle synthesis examined as verification of the capability. The

output from the Monte Carlo program is presented only to sh_w its

inadequacy in synthesizing waffle plates, because of the existence

of relative minima. Compromise I, although capable of solving the

relative minima problem, was not used as a production program;

consequently, no output is presented. All remaining numerical results

were found using Compromise II.

Six sets of input data and optimal designs are presented in this

chapter. The problems are labeled

case i- j

where i is the number of load conditions and j is the case member.

Two synthesis paths are presented to show the design evolution

from the initial trial, through relative minima pockets, and on to the

final design.

It is important to remember that the only bound on the value of a

behavior function is an upper bound of unity. The values of the behavior

functions, significantly different from unity, are important only in the

sense that the structure is not on the verge of failure in that particular

mode. That is to sayj the only behavior function bounds which have any

bearing on the optimum design are those which have values near unity.
An _ on numeric values is used to indicate those bounds which constrain

the optimum design. The design parameter symbols marked with m are

the optimal values.

All numerical work was carried out on Case's Burroughs 220 Digital

Computer using the Runcible compiler language.
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INPUTDATAFORCASESl-l, 1-2 and 1-3

CO_iONDATA

a ,, 40 W'

E = 10.5 x 103 ksi

Y = 72.0 ksi

-0"30 1

-0.hO

+0.20

6.00

b x

Total Depth (H) for each case

l-1

H 0.4 "

b = 30 "

p = O.!Ol ibs/cu.in.

= 0.32

¢ = 0.0001

0.OO5 I
0.010

TRIAL DESIGNS

Case I- i

Monte Carlo Comp II

Point A

t
S

b
X

t
W

Point B

Case i- 2

Comp ii

t
S

b
X

t
W

Case I- 3

Comp II

0.300 0.3OO 0.300 O.010

5.0oo 5.oo0 5.0oo 2.1oo

4.ooo _.ooo 4.ooo 1.95o

0.300

2.000

1.950

0.360

5.000

0,250

0.300

2.000

1.950
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t
S

b
x

FINAL OUTPUT FOR CASES I-I, 1-2, 1-3

Case i- I
Monte Carlo

Point A Point B

0.2803 0.0838 0.2803

4.3734 5.2514 4.3735

0.0101 _ 2.2969 0.0101 _

W 34.03h6 36.3488 34.0346

1-2

Compromise II

0.0397

2.5339

0.2358

16.8585

1-3

o.o[_h8

2.7709

o.o848

io.9h23

BF

o.0248

0.0149

0.0198

0.9996

o.o364

o.oh85

0,0157

O.0617 0.0248

0.0188 0.0149

0.0250 0.0198

I.O000 0.9996

0.0000 0.0364

o.oooo o.o485

0.1029 0.0157

o.133o

o.oh54

o.o6o5

1.0000

o.ooho

0.0053

0.7010

0.1304

0.0614

0.0818

0.9961

0.0723

0.096h

0,9969
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INPUT DATA FOR CASES 3-1, 3-2 and 3-3

COMMON DATA

a = 70 "

H = 0.5 "

b = 50"

• = 0.O001

I -O.30 +0.50 -I.OO 1

-O.30 -O.6O 0.00

0.00 -!.O0 -O.[,O

JHI6.00 >

MATERIAL PROPERTIES FOR EACH CASE

Case 3-1

E (ksi) 10.5 x IOs

Y (ksi) 72

p (_s/cu.in) o.1ol

0.32

TRIAL DESIGN

Point A

t = 0._!00
S

b = 5.000
X

t = 4.000
Ig

_ o.oo5I

Case 3-2

30.0 x l0s

150.O

0.276

0.283

Case 3-3

16 x 103

120.0

0.160

0.290

Point B

ts = 0.400

b = 2.000
X

t = 1,950
W
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CASE 3-1

FINAL OUTPUT

POINT A

t
S

b
X

o.01o6

o.01o6

o.o106

0.84o8

O.0176

O.0176

0.O026

POINT B

BF ] -

t
S

b _
X

0.0106

0.0106

0.0106

o.8_I

0.0192

0.0192

0.0020

= 0.3942

= 3.1821

O.0697

o.o176

0.0211

0.9701

_.o294

0.0353

0.0003

= O.3941

= 2.8271

0.0697

O.O176

0.0211

0.9706

-0.0320

0.0384

0.0003

t
_g

w_

t
W

PROGRAM - COMPROMISE II

= 0.0108 _

= 139.6039

0.0428

0.0352

0.O000

0.9997 _

o.o588

0.0000

0.0043

= O.0104 _

= 139.5998

0.0428

O.0352

0.00OO

1.0OO0 _

0.0640

0.0000

0.0034
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CASE3-2

F_AL OUTPUT

POINTA

[BF]-

U--

POINT B

t _ - 0.0520
s

b _ = 3.7051
X

o.o154

o.o154

o.o154

0.8432

0.0000

0.0000

o.15oo

0.2276

o.o257

0.0309

0.9754

-0.0002

+0.0002

0.0963

b
X

o.o155

o.o155

o.o155

0.8432

0.0000

0.0000

Lo.1624

t _ '.' 0.6421
w

W _ = 187.1947

0.1027

o.o514

0.0000

1.O000_

0.0003

0.0000

0.2614

PROGRAM - COMPI{OMISE II

- 0.0495 t _ - 0.6459
W

= 3.675 W _ : 187.3800

0.2382 0.1066

0.0259 0.0518

0.0311 0.0000

0.9575 I- 0000_

"0.0002 0.0003

0.0002 0.0000

0.!178 0.2852
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CASE 3-3

FINAL OUTPUT

POINT A

t
S

b _
X

0.0072

0.0072

0.0072

0.8408

0.0348

0.0348

0.0042

POINT B

t
S

b
X

0.0072

0.0072

0.0072

o.84o8

0.0272

0.0272

O.0021

BF] =

BF] =

- o.3447

= 4.0717

o.o478

0.0121

o.o145

0.9701

-o.o579

0.0695

0.0OO7

= 0.3445

= 2.9069

0.0478

O.0121

o.o_5

Oe9701

.0453

0.0543

0.0004

PROGRAM - COMPROMISE I!

t _ = 0.0099 _
W

W _ = 193.4650

0.0294

0.0241

0.0000

0.9996 _

O.1159

0.0000

0.0070

t _ - O.0112
W

W E = 193.5714

0.0294

0.0242

0.0000

0.9997 _

0.0905

0.0000

0.0036



CASEI- 1

Cycle
1
2

3

4

5

6

7

8

9

i0

ii

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

3O

t
s

0.3000

o.o334

0.1722

O.O348

0.1149

0.0361

o.2142

o.o531

0.1221

0.0997

0.O978

0.0782

0.0779

0.0929

0.O919

0.2768

o.2669

o.2794

0.2736

0.2802

0.2771

o.2804

0.2788

0.2805

0.2796

0.2805

0.2801

0.2803

0.2802

0.2803

TABLE I

SYNTHESIS PATH

b
X

5.0000

5.0872

5.3338

5.3679

5._o81

5.6243

4.9150

4.9316

5.0286

5.0307

5.2127

5.1701

5.!702

5.2392

5.2393

5.2711

5.2712

3.3337

3.3337

3.7624

3.7624

4.2093

4.2093

4.346o

4.346o

4.3711

4.3711

4.3735

4.3735

4.3735
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PROGRAM- COMPROMISE II

t W
w

4.0000 47.9952

3.8886 46.0138

3.7397 46.o138

3.6905 44.1581

3.6247 44.1581

3.5995 42.7630

2.4388 42.7630

2.4051 37 oI_435

2.1502 37.)_435

2.1453 36.4125

2.2331 36.4125

2.2943 36.!_125

2.2942 36.14004

2.2547 36.h004

2.2545 36.3626

0.5234 36.3626

0.5229 35.3855

0.1785 35.3855

0.1781 34.7558

o.!o45 34.7558

O.] 043 34.3970

0.0595 34.3970

0.0594 34.2034

0.0310 34.2034

0.o31o 34.!006

o.o156 34.!0o6

0.0!56 3h.o535

0.o117 34.0535

o.o117 34.0346

O.OLOI 34.0346
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CASE

Cycle

I

2

3

4

5

6

7

8

9

iO

II

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

3-3

t
S

0.4000

0.0500

O.2113

o.o519

o.1384

o.o534

0.2675

0.0525

Oo1377

O.O911

O,1097

O.IO94

O.0980

O.0971

O.1018

0.3383

0,3374

o.3442

O.3413

0.3447

0.3432

o.34_9

o.34_

0,3450

0.3446

0.3447

TABLE 2

SYNTHESIS PATH

b
X

5.0000

5.1283

5.3778

5.4227

5.65O8

5.6709

4.9569

4.9825

5.o812

5.0858

5.1611

5.1612

5,1603

5.16o4

5,2467

4.1o35

4.!035

4.1355

4.1355

4.0262

4.0262

4.0520

4.0520

4.ow16

4.o716

4.0717

PROGRAM- COMPROMISE II

t W
w

4.0000 277,7600

3.8343 263.9557

3.6836 263.9557

3.6171 252.1764

3.5546 252.1764

3,5224 244.1024

2.3540 244.IO24

2.2994 207.3220

2.Oh02 207.3220

2,0285 197.2403

1,9854 197.2403

1.9853 197.1718

2.0302 197.1718

2.0300 196.9714

2,0453 196,9714

0.1746 196.9714

O.1746 196,5287

0.0906 196.5287

0.0903 194,9753

o.o_49 194.9753

o.o_7 194.1170

0.O227 194.1170

0.0226 193,6832

0.Ol14 193,6832

0.Ol14 193.4650

0,0099 193.4650
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RESULTSANDDISCUSSION

This section is subdivided into two major sections: the examina-
tion of the results to showthe characteristics of synthesis and the
discussion of results in conjunction with certain preconceivednotions
of waffle design.

Twobasic waffle plates are studied in detail. Thefirst set is
subjected to a single load condition and the design requirements are
varied by changingthe total depth of the structure. The secondset
of waffle plates is subjected to three load conditions and the design
requirements are varied by changingthe material properties. This
secondset of design problemsshowshowa structural synthesis capability
maybe used as a scientific aid in the selection of a material to do a
specific job. Thematerials selected for the study are only typical
alloys of aluminum,titanium and steel.

Synthesis Characteristics

MonteCarlo

CaseI- l was synthesized using the first computerprogramMonte
Carlo. It was found that the starting point had a significant influ-
ence on the final optimum. For example, when

t = O.3000
8

b _ 5.0000
x

t = 4.0000
w

was used as the starting point, the final output was:

and when

Point A t = 0.2803
s

b _ = 4.3734
x

t _ = 0.0101
w

W _ = 34.0346

t _ 0.36o0
s

b = 5.0000
x

t = 0.2500
w

was used as the initial trial_ the resulting output was
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Point B

t_ = 0.o838
S

b m = 5.2514
x

t _ = 2.2969
W

W _ = 36.3h88

Notice that the two resulting designs, although different in weight
by only 6 percent_ are radically different in configuration. This is

the first indication of the possibility of a relative minimum. Several

other starting points were tried but each time the final output was

either Point A or B. A highly specialized computer program, which

examined the designs along a straight line between Points A and B, was

then written. It was found that this trace in the design parameter

space went under the composite constraint surface into the region of

violation and more important re-entered the acceptable region. This

indicates that there are relative minima pockets in the composite

constraint surface when plotted in the design parameter space. It

was observed that these two relative minima were both bounded by the

gross buckling constraint surface. In fact_ the whole region of the
composite surface between the two relative minima could be attributed

to the gross buckling constraint. Therefore, the relative minima are

not necessarily created by union of the individual behavioral con-

straints into the composite surface but can be generated by an indi-
vidual surface. The relative minima in the individual constraint

surfaces are due to the polynomial nature of the analysis expressions.

A close examination of the expressions for the flexural and

torsional rigidities and the sub-critical buckling expressions shows

that the gross buckling behavior is not dependent upon the specific

values of tw and bx but only the ratio tw/b x . The expression for
a constant weight surface also has this characteristic. Therefore,

it is possible to map the gross buckling constraint surface for a

constant _ight by a simple incremental variation to tw_ x . A

second specialized computer program was written employing these
characteristics. The procedure is as follows:

a. select a weight for a design problem (e.g.p Case I-1
use the higher of the two relative minima)

b. calculate the design for a maximum t_ ratio_ i.e.,

minimum ts, and examine the behavio_ o_ this design

c. reduce tw/b x by some fixed increment examining each

design until tw/b x reaches a minimum value.
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The output from this program indicates relative minima pockets

even for a constant weight. Therefore, the relative minima pockets

also exist in the corresponding weight space° The cubic nature of

the gross buckling behavior function indicates there is a maximum of
three values of sheet thickness for a fixed weight, thus indicating

the relative minima are possible within a single constraint surface.

There are several other characteristics which can be studied for

single load condition cases

the thin sheet relative minimum design may be governed

by a single constraint surface. It is not necessarily
true that the optimumdesign be at the intersection of
two or more constraint surfaces.

b@ if a second constraint surface is active in the thin

sheet relative minimum pocket, it w ill be the local

buckling of an individual panel; or the lower bound
on the sheet thickness.

C@ the thick sheet relative minima design on the other

hand will, in general, lle at the intersection of
two constraints:

1. gross buckling

and

2. local stiffener buckling or stiffener thickness

lower bound.

Although it is not obvious, it is not possible at the outset to

determine or predict which of the two distinct relative minima will be

the absolute minima. The optimum design for Case l- 1 is a thick sheet

design bounded by gross buckling and stiffener thickness lower bound.

In this case the true optimum is most likely a plane sheet without

stiffenerso

Case l- 2, on the other hand, has several relative minima within

the thin sheet design pocket. The Monte Carlo program found the

relative minima by starting from different initial trial points. These

sub-relative minima pockets are due to the polynomial nature of the

expressions for the local buckling behavior of the sheet.

Because of the existence of both the relative and the sub-relative

minima the Monte Carlo program is inadequate to synthesize waffle plates.

Since the final output is so heavily dependent upon the initial trial,

it is impractical to use the Monte Carlo program to find all relative

minima and choose the optimum. Therefore, it was necessary to de,lop

a scheme of hopping from pocket to pocket, or piercing the constraint

surfaces to examine hidden points.
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Compromise I

Compromise I_ described previously, has the capability of solving

the relative minima problem. Because of the method of selecting

alternate step directions of travel the running times were rather high.

For example, a typical single load condition case required approximately

90 minutes of computer time. Compromise II reduced the running time

by a factor of three and consequently Compromise I was not used as a

production program.

Compromise II

The bulk of the production results was generated with the

Compromise II waffle synthesis program. Case i-i synthesized with

the Monte Carlo program was repeated using the Compromise II and

converged to the thick sheet design, the lower of the two relative

minima found with the Monte Carlo program.

The results substantially support the argument that Compromise II

will converge to the absolute minimum within a field of relative minima.

The optimum design for Case I- 3 is a thin sheet design. The values

of the behavior functions indicate that the optimum lles at the inter-

section of the gross buckling and local sheet buckling constraint surfaces.

Tables I and 2 are syntheses paths, i.e._ complete histories of design
evolution. Case I-I starts from the initial trial of

t = 0.3000 b = 5.000 t - 4.000
B _ w

and after 15 design cycles converged to an upper relative minima of

ts = 0.0919 bx = 5.2393 tw = 2.2545

It is interesting to note the correspondence of this intermediate

point with the final output Point B of Case I- i as synthesized with

the Monte Carlo program. The next alternate step

ts . o.2?68 bx = 5.27_ tw - O.5234

is in the thick sheet design region. The synthesis path continues in

this _ region of the design parameter space until it converges to
the absolute minimum at

ts - 0.2803 bx " 4.3735 tw - O.O101

This final optimum is identical to the final output Point A of Case I-I

as synthesized with the Monte Carlo program.
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Cases3-i, 3-2 and 3-3 are design problemswherethe waffle
plates are subjected to three sets of load conditions° Thefinal
optimumdesigns are balanced designs for the three load condition
system.

Themotivation for developing a synthesis capability for multiple
load conditions is twofold:

a. the optimum design may be controlled by constraints of

more than one load condition (e.g. the optimum design

may lie at the intersection of the gross buckling

constraint of load condition No. 1 and local sheet

buckling constraint of load condition No. 3.)

b. at the outset of most design problems involving a

multiplicity of load conditions it is usually not

possible to predict with certainty that a single
load condition will dominate. In those cases where

it is known that a single load condition will control

the optimum design it is rarely possible to predict
with confidence the dominant load condition

The task of establishing the existence of a dominant load condition,

as well as the dominant load condition, is particularly complex since

the design is not fixed. All of the programs generated for this study

haw the capability of handling five sets of design load systems. The

programs consider the effects of all sets of loads and designs accordingly.
The optimum designs of Cases 3-1, 3-2 and 3-3 are each controlled by a

single load condition.

Compare, for each case, the results of starting from two trial

design points. In general the corresponding coordinates of each set

of optima agree within a few percent. The greatest discrepancy occurs

in the bx design parameter. It is important to note that bx appears

almost invariably in the denominator of the analysis expressions thus

lending a hyperbolic character to its influence. In general, the design

will be out in the flat portion of the hyperboloid. Therefore, there

is not a strong dependency of the behavior and weight of this design

parameter. The double points are considered sufficiently close to
consider these results as the absolute minima and conclude that

Compromise II successfully synthesizes waffle plates.

Table 2 is a synthesis path of Case 3-3. Starting from an initial
trial of

t m 0.4ooo b m 5.0OO t - 4.ooo
s : w

the synthesis path converged to

t - 0oI018 b = 5.2467 t = 2.0453
s x w
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after 15 design cycles. This point wasfound to be at the bottom of
an upper relative minimumpocket. The next alternate step

t = 0.3383 b = 4.1035 t = 0.17h6s x w

movethe design into the thick sheet design region. Thesynthesis
path then convergedto the thick sheet optimum

t = 0.3447 b = 4.071h t - 0.0099
s x w

The program successfully distinguished between two relative minima

where the difference in the weight was only 3percent.

Waffle Design Concepts

The following is a list of co_nents generated as a result of

studying the various optima. Whenever possible, comparison with

preconceived notions is included.

Compare case I-i, 1-2 and 1-3. Case i-i is constrained to a

total depthj H of 9.4 ", and the optimum weight is 3h.O346. If this

requirement is relaxed to 0.6 " as in Case 1-2, the optimum weight

reduces to 16.8585 amounting to a weight savings of over 1OO percent.

If the total depth is further increased to 0.8, as in Case 1-3, the

optimum decreases still further to 10.9423 amounting to an additional

weight savings of over 50 percent. This conflict of wight versus

total depth available for a stiffened panel often exists. The results

presented here indicate dramatically the weight savings which can

be accomplished by increasing the total depth of the structure.

Notice, too, that the basic nature of the design shifts with

increasing H. When H is constrained to 0.4 I,, the optimumdesign

is a thick sheet design_ but when H m O.6" or 0.8" it is a thin

sheet design of considerably lower weight.

When the total depth is severely limited (e.g., H = O.h") it

is found more advantageous to increase both the twisting and bending

stiffness by adding to the sheet thickness rather than to increase

just the bending stiffness by adding to the stiffeners.

Since the weight-strength character of waffle plates is so highly

dependent upon H, it is suggested that in the future H be treated as

a design parameter with appropriate upper and lower bounds. At first

one might think that the optimum would always lie at the upper bound

on H, but this is not necessarily so. As H increases, an additional

design conflict becomes active. If H gets too large, the local

stiffener buckling behavior becomes critical.
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Case1-3 is boundedby two active constraints, gross buckling
and local sheet buckling. Local stiffener buckling will not be
active becauseof the lower boundon tw unless the total depth H is
increased. It maybe possible, although a case has not beenfound
as y_t, that an optimumdesign be boundedby all three buckling
criterion.

Optimumshift and design type shift mayoccur as a consequence

of a material change. The optimum design for Case 3-1 (aluminum) is

a thick sheet design of weight 139.60 pounds. Moving up the density

scale, Case 3-3 (titanium) has as its optimum a thick sheet design

of weight 193.J_7. Notice from Table 2 , cycle 15 that this case has

a competitive thin sheet design of 196.97. Moving further up the

density scale, Case 3-2 (steel) has a thin sheet optimum weight of

187.19. The Monte Carlo program was used, with a prejudiced starting

point, to find the thick sheet relative minimum pocket for Case 3-2

(steel). The results were as follows:

t _ 0.2788 b I 3.0260 t I 0o0118
s x w

W = 270°9432

These results clearly indicate that the optimum weight and design

type may shift due to material change.

CONCLUSIONS

The conclusions may be stated simply as follows:

Based on the analysis presented in Appendix B the success-

ful development of a synthesis capability for symmetric waffle

plates with integral orthogonal stiffeners is reported.

It is thought that the method developed may be applied

with minor modifications to a wide _ariety of systems with a

non-linear merit function, regardless of the existence of

relative minima. Completion of the symmetric waffle synthesis

program supports the contention that a structural synthesis

capability can be developed for complex structural systems of

current and future importance.

A secondary set of conclusions are derived andappear in the form

of recommendations for future work on analysis and synthesis.
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The background study in preparation for developing a synthesis

process is essentially a study of the existing technology and there-

fore points up the shortcomings and absence of applicable analyses.
The following is a list of aspects of the analysis which merit further

study:

a. Study of the interaction expression for three inplane

loads over a wide range of aspect ratios.

b. A study to more clearly define the range of applicability

of the equivalent plate concept. Further study to deter-

mine the appropriate buckling pattern when the equivalent

plate theory is not applicable.

C. A study of the assumed boundary conditions used for the

local buckling criterion of both stiffener and sheet.

d@ A study of the stress distribution in the stable waffle

plate based on a theory of elasticity solution.

Based on the results of the synthesis study, the following is a

set of recommendations for future work on synthesis:

a. Use the current version of Compromise II to examine further

the characteristics of the optimum design.

b. Develop more conclusive techniques for proving an optimum.

c. Develop and test more efficient methods of travel.

d. Increase the number of design parameter to six by permitting

an unsymmetric stiffener configuration.

Engineering Division

Case Institute of Technology

Cleveland, Ohio, August I, 1962

This investigation was conducted at Case Institute of Technology
under Grant NsG-110-61, and with the financial assistance of the

National Aeronautics and Space Administration.
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APPENDIXB

GOVERNINGTECHNOLOGYOFSYMMETRICWAFFLEPLATES

The first step in developing a procedure for minimumweight
balanced design of integrally stiffened waffle plates is to put
together a methodof analysis which adequately predicts the behavior
of such plates. The governing technology to be used to develop a
synthesis capability for integrally stiffened waffle-like plates is
given in this Appendix. While no detailed derivations are presented,
the specialization of expressions to apply to the synthesis of
orthogonally stiffened waffle plates is outlined. A discussion of
the assumptionsand restrictions imposedby the analysis is incorporated
into the presentation of the analysis.

Orthotropic Plate Equations

Many researchers, (see Bibliography, Appendix A), have studied

individual characteristics of integrally stiffened f_ plates,

cylinders and curved panels. Dow, Libove, and Hubka_J derive the
formulas for the elastic constants of the equivalent orthotropic

plate. This analysis facilitates the use of orthotropic plate theory

for the class of flat structures known as integrally stiffened

waffle-like plates. Since the investigation is restricted to flat

rectangular waffle plates with simply supported edges, subject to

any combination of inplane loads Nx, N and N , the governing
differential equation is : y xy

_4 w _4 _4 _2 _2

Dx _ + 2D s w + D_ w w + 2 N w_x 2 _y2 _ + Nx 2 xy_x _x _y

_2 w - 0 (BI)
2

+Ny _ Y

The gross instability of the equivalent plate is studied employing

a linear elastic buckling technology and the assumed mode technique

and hence can be viewed as an eigenvalue problem.

Gross Buckling of a Waffle Plate

The gross buckling behavior of the waffle plate is studied by

first transforming the waffle plate to its equivalent orthotropic

plate via the elastic constants and then employing a linear elastic

analysis to determine the buckling loads. The assumed mode used

throughout the stud_ is :
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w(x) = I] _. A sin n---n-nx sin _ (B2)
n m mn a b

which was reduced from the general trigonometric Fourier Series.

The interaction expressions for several cases of isotropic

plates subject to combinations of two inp½a_ loads can be found
in the literature. Bleich( 3 )and Gerard _ uJ give expressions for

flat isotropic plates with moderate aspect ratios ar = a/b.

These interaction equations enjoy substantial experimental

support over the range of aspect ratio

l
_ < ar < 3

Lekhnitski ( 5 ) gives the same interaction expression for

orthotropic plates subject to combinations of two inplane loads.

A single interaction expression can be conjectured from these

interaction expressions.

N E ylNx + _ +
(Nx) cr ('N'ycr (Nxy) cr

= 1

It is readily apparent that this expression reduces to the

accepted interaction expression for any combination of two inplane

loads, applied to flat orthotropic and isotropic plates.

Since the combined interaction expression reduces to all

possible sub-cases it may be considered as a proposed interaction
formula for flat orthotropic plates subject to any combination of

three inplane loads Nx , N and Nx . A first analysis, using the
differential equations (Bl_and assumed modes (B2), has been

completed. Although only a few terms were retained in the series,

the results gave support to equation (B3) as the correct expression.

While the proposed interaction expression (B3) shows promise it is

not firmly established as yet.

Since any synthesis process must be based on accepted analysis,

the composite interaction expression (B3) can currently be used with

confidence only for design load systems made up of any combination

of two loads. It is intended that the synthesis capability developed

be based on (B3) and apply for design load systems made up of any
combination of two loads. At the same time this synthesis capability,

based on the most plausible analysis available, will be capable of

handling design load systems made up of three inplane forces.



In order to use the interaction expression (B3) it is necessary
to have expressions for the individual critical loads (Nx)cr, (Ny)cr9
and (Nxy)cr.

Instability of Orthotropic Plates Subject to a Single Inplane Load
or

Nx3 Ny Nxy.

Expressions for the bucklin_ loads of orthotropic plates subject

to the single inplane loads, Nx , N and Nxv , are needed for the inter-
_ction expression (B3). The gener_lmetho_of attack, outlined above,

is employed throughout using the differential equation (B1) with the

proper applied load terms deleted and the assumed mode (B2) .

Lekhnitski (5) gives the expression for orthotropic plate buckling

under normal load Nx. Notice that the expression for (N) can alsoy cr
be derived from the expression for (Nx) by a simple permutation of
subscripts and an exchange of e I = l_ The expression for N is
as follows : r r o x

2°3
(Nx)cr :- b2 r ÷ _ + (_')

(B4)

where m' is the integer yielding to the smallest value of NxO

A s-Lmple permutation of subscripts and interchangc of variables

yields the following:

2°3oi2

(Ny)cr = (p, er ) + +

where p' is the integer yielding the smallest value of Ny.

Notice that both of the expressions will yield negative values

for (Ny)nr and (Nv)cr. This is a consequeuce of the sign convention
assume_ For the a_plied loads (See Fig 3 )o

Seydel ( 6 ) presents a study of the instability of simply supported

orthotropic plates under an inplane shear loading. The following

notation is used as a means of simplifying the expressions for shear

buckling
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The following definitions apply only for 8 > I which is always

true for waffle plateso

h_ (m_)h 2b (re,n) = + 2 (m_)2 n n h= - _ _ @ 8 +
a

D I D e
N = +C

2
xy a b

(_)

(s6)

where m and n are integer parameters of the assumed mode expansion.

One additional restriction is that the value of _ must always be

between zero and unity. Since DI equals D 2 this means that the problem

must always be cast such that the aspect ratio, e/b, be greater than

unity.

C is a buckling coefficient given by the following expressions :

for n a= l, 2, 3 and m = q, q+l_ q+ 2.

Case I

or

Symmetric buckling with q odd

Antisymmetric buckling with q even

C
a ii I

2 --
9 + q+ z 9 I

2'F_(q, 3) 2q7 9_ (q +2, l) + _-_(q+2, 3

(BT)

Case II

or

C
a

Symmetric buckling with q even

Antisymmetric buckling with q odd

<
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2 (q + 2)2 I 1

q +

X (2q + 1) 2 _ (q, 2) (2q + 3) 2 _ (q + 2, 2)

- i/2

(B8)

Notice that there exists a unique expression for C for both
symmetric and antisymmetric buckling. Stein and Neff(7 a) showed

that either the symmetric or antisymmetric mode can be critical

aepending upon __, the aspect ratio. This is also true for ortho-

tropic plates bu_ the dependency is upon _ where _ = ar' 4_/_I _,

The critical value of Nxy must therefore be determined from two
complete sets of mode parameters. That is, given the values of

e and _ as data, deterrd_ue the minimum magnitude of Nxy as a function
of the integer parameter q and gross buckling pattern (symmetric

or antisymmetric).

The above expressions are used in conjunction with the inter-

action expression (B3) to give the necessary technology to predict

the gross buckling behavior of simply supported waffle plates. This

analysis constitutes a major portion of the governing technology upon

which the synthesis capability is based. Up to this point the analysis

has dealt only with orthotropic plates, in general. In order to use

the analysis it is necessary to transform the waffle plate into an

equivalent orthotropic plate. The equations of the elastic constants
used for this transformation were derived by Dow, Libove and Hubka(2) .

Elastic Constants for the Equivalent Plate

The gross buckling phenomenon of the waffle plate is studied by

generating an equivalent plate and studying the buckling characteristic

of this equivalent plate. A detailed derivation of the transformation

is outlined in Ref. 2 . The basic assumptions or restrictions necessary
to make this transformation are as follows :

o The rib spacings of the integrally-stiffened plate are

small in comparison with the overall width and length

of the plate. This assumption is made in order that the

average or overall behavior _y be studied rather than a

detailed study of any particular segment. Several studies

have been made where the rib spacing was large (i.e., one,

two or even three ribs in either or both directions). In

this case the behavior cannot be examined on a gross scale

but a detailed elastic stability study of the interacting

subsystems has to be performed.

2@ This particular analysis is concerned with waffle plates

with only longitudinal and transverse ribs. The expressions

for the elastic constants are specialized from those given

in Ref. 1. It is important to notice that the restriction

in no way limits the gross instability analysis. In order

to extend this study to include skewed stiffeners, only a

modification of the expressions for the elastic constants

would be necessary.



-49 -

@ Since the shear stress, _xy, is zero at the outer boundary
-- Sof each stiffener, it is assumed that the shear stres _x_

is zero throughout each stiffener. The total shear load J

therefore must be carried by the back-up sheet.

@ The formulas for the equivalent elastic constants involve

coefficients _, _, m' and _' which define the effective-

ness of a rib in resisting transverse stretching and

bending and inplane shearing and twisting.

The terms _ and _' represents that fraction of the volume of a

rib resisting stretching and shearing respectively. The terms a and

a' locate the centers of gravity of these effective volumes. The

lower bound of zero is assumed for _ and _' and consequently the
values of _ and _' are immaterial.

Consider a waffle plate with only one set of stiffeners, subject

to a load Nx which is transverse to the stiffeners. It is readily
apparent that the normal stress in the sheet midway between two ribs

is Nx/t if the stiffener spacing is large compared to the stiffener
thickness. It is also true that the normal stress in the vicinity of

a rib is lower than the normal stress midway between two ribs. However,

a uniform normal stress equal to that at the midpoint is assumed to

exist throughout. That is, it is assumed that a rib has no effect on

the stress distribution generated by a transverse load.

With the above restrictions, consider the elastic constants used

in the previous section to study the gross buckling phenomenon. The

expressions for the flexural rigidities and torsional rigidity for the

symmetric waffle are :

BI = D2 . EH 3 I ts

12 (i - _2) C-H- ) ÷

ts t t ]
÷ (1-

8 (1 - 2) x L

t s t

X

(I + _)

t t t

÷
(1- _)

t t t

(£)
X

(Bg)
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and

2 Ds E Hs

E
1

3 (I- 2)

t t t

('I- 2) x

3
t

(Bio)

Local Buckling of a Waffle Plate

Two distinct modes of local buckling of waffle plates are considered,

Examine the case where the stiffeners are thin compared to the sheet.

Then it is possible for the sheet to undergo a stable inplane displace-

ment while the stiffeners become unstable in a mode comparable to flange

buckling. On the other hand, if the sheet is thin compared to the

stiffeners, it is possible for each individual panel to buckle as a

rectangular plate while the stiffeners undergo a stable inplane deflection.

In both cases the mathematical model is a rectangular isotropic plate.

Consider the case of stiffener instability which occurs when the

stiffener thickness is small compared to the sheet thickness.

The model used for analysis is the portion of a longitudinal

stiffener between two adjacent transverse stiffeners. The boundary

conditions are taken as follows: hinged ends, hinged on one edge and

free on the other edge. The applied load is a uniformly distributed

normal load applied along the hinged ends of the plate.

The expression for critical loads are as follows:

and

t 2 b t

2D, w t [ x s(_x)cr = " _ ('H - )
S

*t (H-t)

w s J_KB (BII)
bx

z t 2 [ b t +t (H-ts) _(_y)cr "- " D, (._ w ,) s w JX B (B_)
- ts bx

where :

K B

2

. (1) + 0.h25 (BI3)

b - t
X W

i ,

H - ts
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Consider the case of sheet instability which occurs when the

sheet thickness is small compared to the stiffener thickness. The

mathematical model used for this system is a rectangular isotropic

plate bounded by two transverse stiffeners and two longitudinal

stiffeners which are assumed to provide hinged boundary conditions.

Since it is possible for the sheet to carry all three inplane loads

Nx, Ny and Nxy , the interaction expression

N NxyNx , _ + - I (BI_)

must be used to predict the instability of the back-up sheet.

For this case the expressions for (Nx)cr , (Ny)cr and (Nxy)c r
are as follows :

+ t (H-t s)2 _ tsbx w

(Nx)cr" -4._ _ D )2 t b ]
ts (bx " tw x

(B15)

2 [ t b +t (H-ts) ](Ny)cr -4.00 _ D s x w
ts (bx . tw)2 bx

(B16)

2 S
Et

(_xy)cr = + 9.34 [ s (BI7)
- 12 (I- 2) bx .<)_

The above expressions give the equations necessary to predict

local waffle plate instability w_en it occurs as stiffener or sheet

buckling. The one remaining mode of failure is the material yield

criterion which is presented in the next section.

Material Yield Criterion

Under normal applications the design of waffle plates is governed

by a buckling criterion. Since the synthesis process is developed

from a linear theory of elastic buckling, it is necessary to know when

the final design is such that the analysis is not valid and an inelastic

buckling theory should be employed. A material yield criterion is used

as an alarm to determine when the final design is not governed by the

elastic buckling constraints. Because of the nature of the synthesis

process, it is possible for an intermediate design to be governed by

material yield criterion. If the re-design process continues and finds

a new design which is governed by an elastic buckling constraint,



-52 -

the intermediate design is subsequently discarded. In short, the analysis

assumes ideal elastic-plastic behavior of the structural material.

The distortion energy criterion, employed as the material yield alarm,
is as follows :

l

f t-2 2 2 2

The expressions for stresses are substituted into (BIB) to give

1

1 < Nx x _ ,. _ + 3 ( ) (BI9)

Y = II ts t t z

X

The ordering of principal stresses is unnecessary and the above

expression is valid regardless of the mgnitude or sign of the applied
loads.

A uniaxial state of stress exists in each stiffener and the distortion

energy criterion reduces to :

_[ s (T
max " amin

Since the coefficient relating stress to load is always positive

the stiffener yield criteria can be expressed as

Y - ts bx w+ t d

Y = Ny s bx w+ t d

for the sys_etric configuration of stiffeners.

The foregoing expressions (BI9) (B20)and (B21)give the analysis
necessary to predict material yield.
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Side Constraints

Any assumption or restriction which is not imposed automatically

by the analysis must be provided for as an independent side constraint

in the synthesis process, as is done in any design process. For example,

in order to use the equivalent elastic constants, it was assumed that

the rib spacing is small in comparison with the overall length and width

of the plate. The analysis, as such, does not impose this restriction.

Therefore, it must be incorporated into the synthesis process as

b < --a-a (B22)
x KI

b < --h-b (B23)
x K m

where KI is a constant greater than unity and directly related to the
minimum number of stiffeners.

In preparing a synthesis process, all mathematically possible

but physically absurd designs must be anticipated and prevented through

the use of independent side constraints. For example, it is physically

impossible for the stiffener spacing to be less than the stiffener

thickness, but there is no mathematical restriction inherent to the

analysis imposing this requirement. Therefore, a lower bound is placed

on the stiffener spacing as:

b > t
x w

A second lower bound is placed on bx . Due to production considera-
tions it may be impossible to produce a waffle plate with a stiffener

spacing less than some fixed val_e regardless of the dimension of tw.

Therefore, a fixed lower bound of K5 is also used and the mathematical
statement of this lower bound is as follows:

bx > K5

b > t
x w

Only one of these statements is necessary for if K5 > twand bx >_
then it follows that bx > tw. The procedure is to select the larger

of K5 and tw and use this as a lower bound, bL.

bx > bL (B24)
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Another example of a compatability bound arises because of the

absence of an inherent upper bound on the sheet thickness. Mathe-

matically it is possible for the sheet thickness to become greater

than the total depth of stiffener plus sheet, i.e., the stiffeners

assume a negative depth. Therefore, an upper bound is incorporated
as

ts < H (B25)

to prevent a design which is physically absurd.

Independent side constraints can arise from restrictions external

to the waffle analysis. For example, if the smooth side of the waffle

is to be used as an aerodynamic surface, it would be undesirable for

the sheet thickness to vanish. Therefore, a lower bound is placed on
the sheet thickness as

ts > K2 (B26)

where K2 is an arbitrary constant.

If K 2 is set to zero, this lower bound can be considered as a constraint

which prevents a physically absurd design i.e., negative sheet thickness.

A lower bound is also placed on the stiffener thickness as

t w > K3 (B27)

where KS is an arbitrary constant.

If Ks is set to zero it prevents a physically absurd design, i.e.
negative stiffener thickness.

The need for some of the above mentioned side constraints is

inherent to the synthesis concept. The mathematical formulation of

an analysis to be used solely to predict the behavior of a structure

may properly assume the existence of a physically attainable structure.

H_ever, when an analysis is to be used as a component part of a

synthesis process, wherein redesign is to take place automatically,

care must be exercised in assuring that only physically attainable

designs are permitted. This then is one role played by what have been
called side constraints.

Development of a synthesis capability for orthogonally stiffened

waffle plates based on the technology presented herein will deal with

design parameters which are actual dimensions of the structure, consider

the effec%s of local and over-all instability on the behavior, and
include a substantial number of side constraints. A flow chart

summarizing the analysis used as a component part of the synthesis
program is shown in Fig. i0.
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